如何解決多層pcb線(xiàn)路板設計時(shí)的EMI問(wèn)題
2016-08-08 來(lái)自: 深圳市富業(yè)達電子有限公司 瀏覽次數:609
解決EMI問(wèn)題的辦法很多,現代的EMI抑制方法包括:利用EMI抑制涂層、選用合適的EMI抑制零配件和EMI仿真設計等。本文從基本的PCB布板出發(fā),討論多層pcb線(xiàn)路板分層堆疊在控制EMI輻射中的作用和設計技巧。
電源匯流排
在IC的電源引腳附近合理地安置適當容量的電容,可使IC輸出電壓的跳變來(lái)得更快。然而,問(wèn)題并非到此為止。由于電容呈有限頻率響應的特性,這使得電容無(wú)法 在全頻帶上生成干凈地驅動(dòng)IC輸出所需要的諧波功率。除此之外,電源匯流排上形成的瞬態(tài)電壓在去耦路徑的電感兩端會(huì )形成電壓降,這些瞬態(tài)電壓就是主要的共 模EMI干擾源。我們應該怎么解決這些問(wèn)題?
就我們電路板上的IC而言,IC周?chē)碾娫磳涌梢钥闯墒莾?yōu)良的高頻電容器,它可以收集為干凈輸出提供高頻能量的分立電容器所泄漏的那部份能量。此外,優(yōu)良的電源層的電感要小,從而電感所合成的瞬態(tài)信號也小,進(jìn)而降低共模EMI。
當然,電源層到IC電源引腳的連線(xiàn)***盡可能短,因為數位信號的上升沿越來(lái)越快,***是直接連到IC電源引腳所在的焊盤(pán)上,這要另外討論。
為了控制共模EMI,電源層要有助于去耦和具有足夠低的電感,這個(gè)電源層***是一個(gè)設計相當好的電源層的配對。有人可能會(huì )問(wèn),好到什么程度才算好?問(wèn)題的答 案取決于電源的分層、層間的材料以及工作頻率(即IC上升時(shí)間的函數)。通常,電源分層的間距是6mil,夾層是FR4材料,則每平方英寸電源層的等效電 容約為75pF。顯然,層間距越小電容越大。
上升時(shí)間為100到300ps的器件并不多,但是按照目前IC的發(fā)展速度,上升 時(shí)間在100到300ps范圍的器件將占有很高的比例。對于100到300ps上升時(shí)間的電路,3mil層間距對大多數應用將不再適用。那時(shí),有必要采用 層間距小于1mil的分層技術(shù),并用介電常數很高的材料代替FR4介電材料?,F在,陶瓷和加陶塑料可以滿(mǎn)足100到300ps上升時(shí)間電路的設計要求。
盡管未來(lái)可能會(huì )采用新材料和新方法,但對于今天常見(jiàn)的1到3ns上升時(shí)間電路、3到6mil層間距和FR4介電材料,通常足夠處理***諧波并使瞬態(tài)信號足夠低,就是說(shuō),共模EMI可以降得很低。本文給出的PCB分層堆疊設計實(shí)例將假定層間距為3到6mil。
電磁屏蔽
從信號走線(xiàn)來(lái)看,好的分層策略應該是把所有的信號走線(xiàn)放在一層或若干層,這些層緊挨著(zhù)電源層或接地層。對于電源,好的分層策略應該是電源層與接地層相鄰,且電源層與接地層的距離盡可能小,這就是我們所講的“分層"策略。
PCB堆疊
什么樣的堆疊策略有助于屏蔽和抑制EMI?以下分層堆疊方案假定電源電流在單一層***動(dòng),單電壓或多電壓分布在同一層的不同部份。多電源層的情形稍后討論。
4層板
4層板設計存在若干潛在問(wèn)題。首先,傳統的厚度為62mil的四層板,即使信號層在外層,電源和接地層在內層,電源層與接地層的間距仍然過(guò)大。
如果成本要求是***位的,可以考慮以下兩種傳統4層板的替代方案。這兩個(gè)方案都能改善EMI抑制的性能,但只適用于板上元件密度足夠低和元件周?chē)凶銐蛎娣e(放置所要求的電源覆銅層)的場(chǎng)合。
***種為***方案,PCB的外層均為地層,中間兩層均為信號/電源層。信號層上的電源用寬線(xiàn)走線(xiàn),這可使電源電流的路徑阻抗低,且信號微帶路徑的阻抗也低。從EMI控制的角度看,這是現有的***4層PCB結構。第二種方案的外層走電源和地,中間兩層走信號。該方案相對傳統4層板來(lái)說(shuō),改進(jìn)要小一些,層間阻抗和傳統的4層板一樣欠佳。
如果要控制走線(xiàn)阻抗,上述堆疊方案都要非常小心地將走線(xiàn)布置在電源和接地鋪銅島的下邊。另外,電源或地層上的鋪銅島之間應盡可能地互連在一起,以確保DC和低頻的連接性。
6層板
如果4層板上的元件密度比較大,則***采用6層板。但是,6層板設計中某些疊層方案對電磁場(chǎng)的屏蔽作用不夠好,對電源匯流排瞬態(tài)信號的降低作用甚微。下面討論兩個(gè)實(shí)例。
***例將電源和地分別放在第2和第5層,由于電源覆銅阻抗高,對控制共模EMI輻射非常不利。不過(guò),從信號的阻抗控制觀(guān)點(diǎn)來(lái)看,這一方法卻是非常正確的。
第二例將電源和地分別放在第3和第4層,這一設計解決了電源覆銅阻抗問(wèn)題,由于第1層和第6層的電磁屏蔽性能差,差模EMI增加了。如果兩個(gè)外層上的信號線(xiàn) 數量***少,走線(xiàn)長(cháng)度很短(短于信號最高諧波波長(cháng)的1/20),則這種設計可以解決差模EMI問(wèn)題。將外層上的無(wú)元件和無(wú)走線(xiàn)區域鋪銅填充并將覆銅區接地 (每1/20波長(cháng)為間隔),則對差模EMI的抑制特別好。如前所述,要將鋪銅區與內部接地層多點(diǎn)相聯(lián)。
通用高性能6層板設計 一般將第1和第6層布為地層,第3和第4層走電源和地。由于在電源層和接地層之間是兩層居中的雙微帶信號線(xiàn)層,因而EMI抑制能力是優(yōu)異的。該設計的缺點(diǎn) 在于走線(xiàn)層只有兩層。前面介紹過(guò),如果外層走線(xiàn)短且在無(wú)走線(xiàn)區域鋪銅,則用傳統的6層板也可以實(shí)現相同的堆疊。
另一種6層板布局為信號、地、信號、電源、地、信號,這可實(shí)現高級信號完整性設計所需要的環(huán)境。信號層與接地層相鄰,電源層和接地層配對。顯然,不足之處是層的堆疊不平衡。
這通常會(huì )給加工制造帶來(lái)麻煩。解決問(wèn)題的辦法是將第3層所有的空白區域填銅,填銅后如果第3層的覆銅密度接近于電源層或接地層,這塊板可以不嚴格地算作是結 構平衡的電路板。填銅區***接電源或接地。連接過(guò)孔之間的距離仍然是1/20波長(cháng),不見(jiàn)得處處都要連接,但理想情況下應該連接。